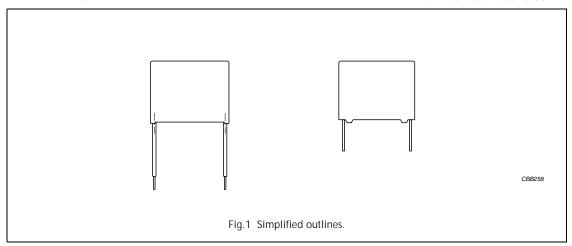
DATA SHEET

MKP 338 4 X2 Interference suppression film capacitors


Product Specification NEW File under BCcomponents, BC05

Interference suppression film capacitors MKP 338 4 X2

MKP RADIAL POTTED TYPE

PITCH 15/22.5/27.5/37.5/55 mm

FEATURES

- 15 to 55 mm lead pitch
- Supplied loose in box
- Consists of a low-inductive wound cell of metallized polypropylene film, potted in a flame-retardant case
- · Fixed and insulated leads.

APPLICATIONS

- For X2 electromagnetic interference suppression
- Specially designed to meet the requirements of the "IEC 60384-14 2nd edition and EN 132400", requiring a 2.5 kV peak pulse voltage test, and the UL1283 specifications.

DETAIL SPECIFICATION

For more detailed data and test requirements see "Type detail specification HQN-384-14/120".

QUICK REFERENCE DATA(1)

DESCRIPTION	VALUE
Capacitance range (E12 series)	0.01 to 10 μF
Capacitance tolerance	±20%; ±10%
Rated (AC) voltage, 50 to 60 Hz	300 V
Rated (DC) voltage	630 V
Climatic category	55/105/56/B
Rated temperature	105 °C
Maximum application temperature	105 °C
Reference specifications	IEC 60384-14 2nd edition and EN 132400
Safety approvals:	ENEC; UL1283 and CSA-C22.2 No.8
Materials	qualified in accordance with UL94V-O
Safety class	X2; across the line

Note

1. Under development.

Interference suppression film capacitors

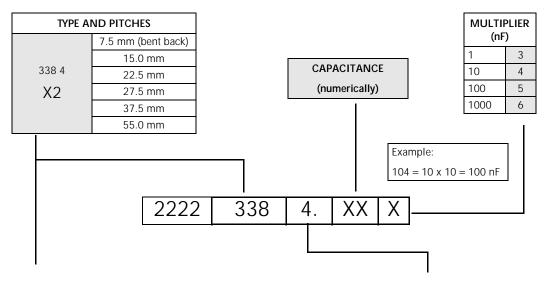
MKP 338 4 X2

SAFETY APPROVALS AND SAFETY TEST REPORT

Approvals

SAFETY	APPROVALS (X2)	VOLTAGE	VALUE	FILE NUMBERS
c FU °us	UL1283 and CSA-C22.2 No.8	300 V (AC)	10 nF to 10 μF	pending
3 02	EN132400	300 V (AC)	10 nF to 10 μF	pending

Safety test report

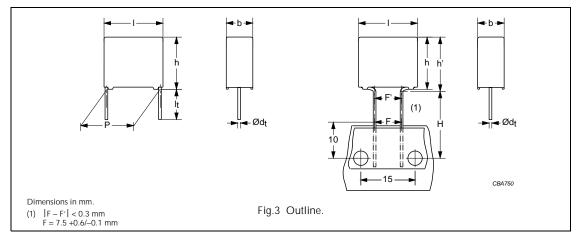

SAFETY TEST REPORT	VOLTAGE	VALUE	FILE NUMBERS
CB TEST CERTIFICATE	300 V (AC)	10 nF to 10 μF: 55/105/56/B	pending

The Enec-approval together with the CB-Certificate replace all national approval marks of the following countries (they have already signed the ENEC-Agreement): Austria; Belgium; Czech. Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway, Portugal; Slovenian; Spain; Sweden; Switzerland and United Kingdom.

Interference suppression film capacitors

MKP 338 4 X2

COMPOSITION OF CATALOGUE NUMBER


TYPE	PACKAGING	LEAD CONFIGURATION	C-TOL	PREFERRED TYPES
		lead length 3.5 mm		44
338 4	loose in box	lead length 5.0 mm	±20%	40
X2		lead length 25.0 mm	120%	41
	taped	15.0 mm bent back to 7.5 mm		4.
				ON REQUEST
		insulated leads stranded Cu-wire 0.5 mm ² for 37.5 and 55 mm pitch		4.
		lead length 3.5 mm		45
338 4	loose in box	lead length 5.0 mm		42
X2		lead length 25.0 mm	±10%	43
		insulated leads stranded Cu-wire 0.5 mm ² for 37.5 and 55 mm pitch		4.
	taped	15.0 mm bent back to 7.5 mm		4.

Interference suppression film capacitors

MKP 338 4 X2

MKP 338 GENERAL DATA

PITCH 15/22.5/27.5 mm PITCH 7.5 mm (bent back leads)

Specific reference data for the 300 V AC (X2) capacitors

DESCRIPTION		VALUE	
Tangent of loss angle:	at 1 kHz	at 10 kHz	at 100 kHz
C ≤ 470 nF	≤10 × 10 ⁻⁴	≤20 × 10 ⁻⁴	≤100 × 10 ⁻⁴
470 nF < C ≤ 1 μF	≤20 × 10 ⁻⁴	≤70 × 10 ⁻⁴	_
1 μF < C ≤ 3.3 μF	≤30 × 10 ⁻⁴	_	_
Rated voltage pulse slope (dU/dt) _R at 420 V (DC)	100 V/μs		
R between leads, for C ≤ 0.33 μF at 100 V; 1 minute	>15000 MΩ		
RC between leads, for C > 0.33 μ F at 100 V; 1 minute >5000 s			
R between leads and case; 100 V; 1 minute	ween leads and case; 100 V; 1 minute $>$ 30000 M Ω		
Withstanding (DC)voltage (cut off current 10 mA); rise time 100 V/s:			
$C \le 1\mu F$	2200 V; 1 minute		
1 μF < C ≤ 3.3 μF	1850 V; 1 minute		
Withstanding (AC) voltage between leads and case		2200 V; 1 minute	9

Available 300 V AC (X2) versions

PACKAGING ⁽¹⁾	DIMENSIONS	C-tol	FIRST 9 DIGITS OF CATALOGUE NUMBER	ORDERING
	Local Locath 2 F man		2222 338 44	preferred
	lead length 3.5 mm	±10%	2222 338 45; note 2	on request
Loose in box	lead length 5.0 mm	±20%	2222 338 40	preferred
		±10%	2222 338 42; note 2	on request
	lead length 25.0 mm	±20%	2222 338 41	preferred
		±10%	2222 338 43; note 2	on request
Tonad	15.0 mm bent back to 7.5 mm	±20%	2222 338 4	preferred
Taped		±10%	2222 338 4; note 2	on request

Notes

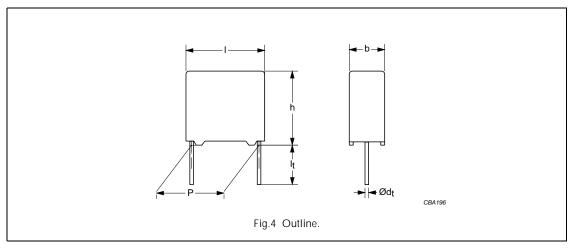
- 1. Taped on reel pitch = 27.5 mm is not available.
- 2. Other dimensions for ±10% tolerance values.

Interference suppression film capacitors

MKP 338 4 X2

$U_{Rac} = 300 \text{ V (X2)}; U_{Rdc} = 630 \text{ V}$	loose and taped
---	-----------------

			CATALOGUE NUMBER			
				LOOSE IN BOX		REEL
C ⁽¹⁾ (μ F)	DIMENSIONS ⁽²⁾ b × h × l (mm)	MASS (g)	$I_t = 3.5 \pm 0.3 \text{mm}$	$I_t = 5.0 \pm 0.3 \text{mm}$	$I_t = 25.0 \pm 2.0 mm$	H = 16.0 mm; P ₀ = 15.0 mm
	, , , , , , , , , , , , , , , , , , ,			C-tol =	±20%	
			catalogue number	last 5 digits	last 5 digits	last 5 digits
Pitch = 1	$5.0 \pm 0.4 \text{ mm}; d_t = 0.60 \pm 0.00 \pm 0.00$	06 mm				pitch = 7.5 mm (bent back)
0.01			2222 338 44 103	40 103	41 103	48 001
0.015			2222 338 44 153	40 153	41 153	48 002
0.022	5.0 × 11.0 (13.0) × 17.5	1.2	2222 338 44 223	40 223	41 223	48 003
0.033	3.0 × 11.0 (13.0) × 17.5	1.2	2222 338 44 333	40 333	41 333	48 004
0.047			2222 338 44 473	40 473	41 473	48 005
0.068			2222 338 44 683	40 683	41 683	48 006
0.1	$6.0 \times 12.0 (14.0) \times 17.5$	1.4	2222 338 44 104	40 104	41 104	48 007
Pitch = 1	Pitch = 15.0 \pm 0.4 mm; d _t = 0.80 \pm 0.08 mm				pitch = 7.5 mm (bent back)	
0.15	$7.0 \times 13.5 (15.5) \times 17.5$	1.9	2222 338 44 154	40 154	41 154	48 008
0.22	8.5 × 15.0 (17.0) × 17.5	2.6	2222 338 44 224	40 224	41 224	48 009
0.33	10.0 × 16.5 (18.5) × 17.5	3.1	2222 338 44 334	40 334	41 334	48 011
Pitch = 2	2.5 \pm 0.4 mm; $d_t = 0.80 \pm 0.0$	08 mm				pitch = 7.5 mm (bent back)
0.47	$8.5 \times 18.0 \times 26.0$	4.5	2222 338 44 474	40 474	41 474	
0.68	$10.0 \times 19.5 \times 26.0$	5.5	2222 338 44 684	40 684	41 684	not available
1.0	$12.0 \times 22.0 \times 26.0$	7.8	2222 338 44 105	40 105	41 105	
Pitch = 2	7.5 \pm 0.4 mm; $d_t = 0.80 \pm 0.0$	08 mm				pitch = 7.5 mm (bent back)
1.5	15.0 × 25.0 × 31.0	12.8	2222 338 44 155	40 155	41 155	
2.2	18.0 × 28.0 × 31.0	17.2	2222 338 44 225	40 225	41225	not available
3.3	21.0 × 31.0 × 31.0	20.4	2222 338 44 335	40 335	41 335	


Notes

- 1. Under development.
- 2. Dimensions in brackets for bent back leads.

Interference suppression film capacitors

MKP 338 4 X2

MKP GENERAL DATA PITCH 37.5/55 mm

Specific reference data for the 300 V AC (X2) capacitors

DESCRIPTION	VALUE
Tangent of loss angle	at 1 kHz
2.2 μF < C ≤ 4.7 μF	≤50 × 10 ⁻⁴
4.7 μF < C ≤ 10 μF	≤100 × 10 ⁻⁴
Rated voltage pulse slope (dU/dt) _R at 420 V (DC)	100 V/μs
RC between leads at 100 V; 1 minute	>5000 s
R between leads and case; 100 V; 1 minute	>30000 MΩ
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	1400 V; 1 minute
Withstanding (AC) voltage between leads and case	2200 V; 1 minute

Available 300 V AC (X2) versions

PACKAGING	DIMENSIONS	C-tol	FIRST 9 DIGITS OF CATALOGUE NUMBER	ORDERING
	lead leadly F.O. mars. mate 1		2222 338 40	preferred
Loose in box lead length	lead length 5.0 mm; note 1	±10%	2222 338 42; note 2	on request
	load loanth OF O many make 1	±20%	2222 338 41	preferred
	lead length 25.0 mm; note 1	±10%	2222 338 43; note 2	on request
	insulated leads stranded Cu-wire 0.5 mm ²	±20%	2222 338 4	on request
for 37.5 and 55 mm pitch		±10%	2222 338 4; note 2	on request

Notes

- 1. Lead length 3.5 mm for pitch = 37.5 and 55 mm is not available.
- 2. Other dimensions for ±10% tolerance values.

Interference suppression film capacitors

MKP 338 4 X2

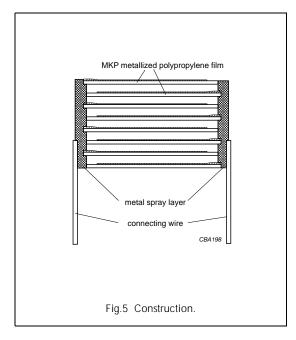
 U_{Rac} = 300 V (X2); U_{Rdc} = 630 V

loose

			CATALOGUE NUMBER		
	DIMENSIONS	MASS (g)	LOOSE IN BOX		
C ⁽¹⁾ (μ F)	$b \times h \times I$		I _t = 5.0 ±1.0 mm	$I_t = 25.0 \pm 2.0 \text{ mm}$	
(40.)	(mm)		C-tol = ±20%		
			catalogue number	last 5 digits	
Pitch = 37.5	± 0.7 mm; $d_t = 1.0 \pm 0.1$ mm				
4.7	18.0 × 35.0 × 42.0	30.0	2222 338 40 475	41 475	
6.8	21.0 × 38.0 × 42.0	35.0	2222 338 40 685	41 685	
Pitch = 55.0	$\pm 1.0 \text{ mm}; d_t = 1.0 \pm 0.1 \text{ mm}$				
10.0	21.0 × 38.0 × 59.5	50.0	2222 338 40 106	41 106	

Note

^{1.} Under development.


Interference suppression film capacitors

MKP 338 4 X2

CONSTRUCTION

Description

- Low-inductive wound cell of metallized polypropylene (PP) film, potted with epoxy resin (for original pitch ≤ 27.5 mm) and polyurethane and epoxy resin (for pitch >27.5 mm) in a flame-retardant case
- · Radial leads, solder-coated
- Small stand-off pips allow removal of solder flux etc. during cleaning of the printed-circuit board
- Radial insulated leads; stranded Cu-wire with PVC isolation for pitch >27.5 mm on request

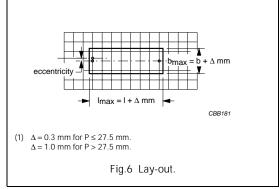
Mounting

NORMAL USE

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to this handbook, chapter "Packaging information".

SPECIFIC METHOD OF MOUNTING TO WITHSTAND VIBRATION AND SHOCK


In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:

- For pitches ≤15 mm capacitors shall be mechanically fixed by the leads.
- For larger pitches the capacitors shall be mounted in the same way and the body clamped.

SPACE REQUIREMENTS ON PRINTED-CIRCUIT BOARD

The maximum length and width of film capacitors is shown in Fig.6:

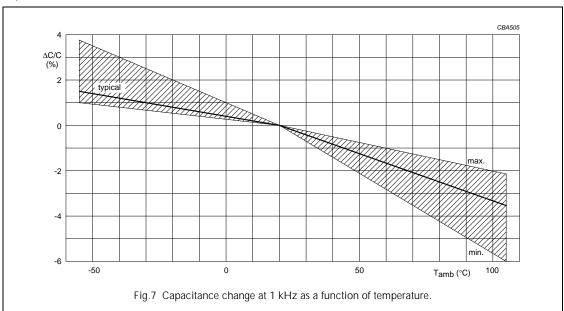
- Eccentricity as in Fig.6. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: h_{max} ≤ h + Δ mm or h_{max} ≤ h' + Δ mm.

Storage temperature

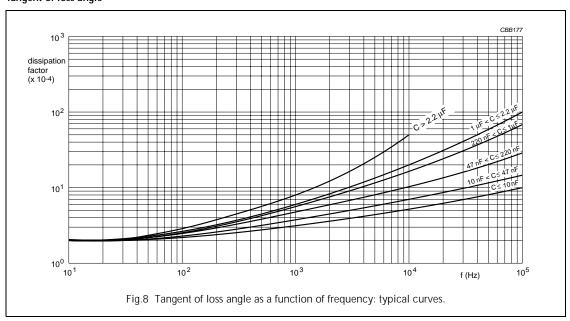
Storage temperature: Tstg = -25 to +40 °C with RH maximum 80% without condensation.

RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS

Unless otherwise specified, all electrical values apply to an ambient temperature of 23 ± 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 50 $\pm 2\%$.

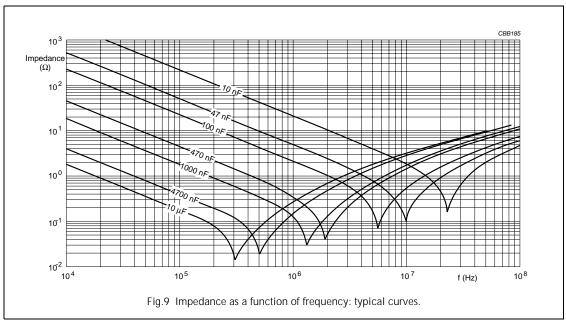

For reference testing, a conditioning period shall be applied over 96 ± 4 hours by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20%.

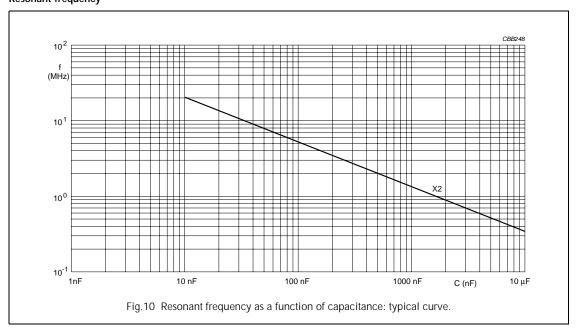
Interference suppression film capacitors


MKP 338 4 X2

CHARACTERISTICS

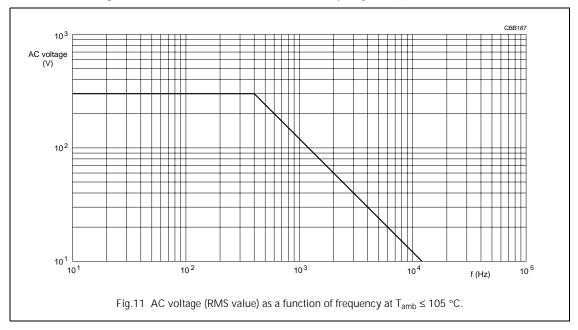
Capacitance

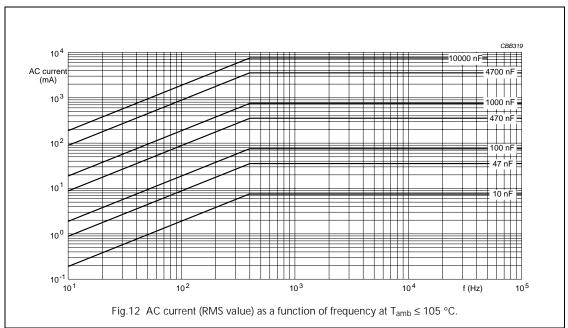

Tangent of loss angle


Interference suppression film capacitors

MKP 338 4 X2

Impedance

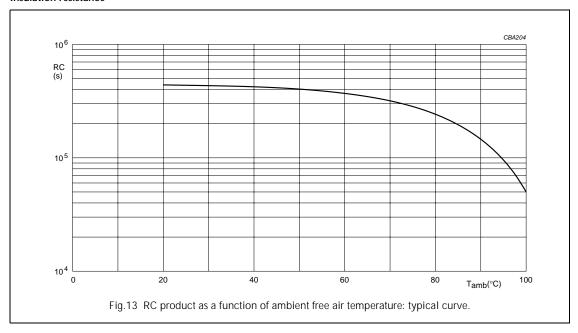

Resonant frequency



Interference suppression film capacitors

MKP 338 4 X2

Maximum RMS voltage and AC current (sinewave) as a function of frequency for T_{amb} ≤ 105 °C



Interference suppression film capacitors

MKP 338 4 X2

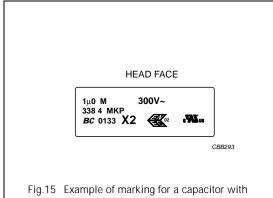
Insulation resistance

APPLICATION NOTES

- For X2 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of 300 V (AC) ±10% instability.
- These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse program must be used, such as: 2222 375; 2222 383 or 2222 479
- The maximum ambient temperature must not exceed 105 °C.
- Rated voltage pulse slope:
 - If the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 420 V
 (DC) and divided by the applied voltage.

Interference suppression film capacitors


MKP 338 4 X2


MARKING

Product marking

The capacitors are marked (see Figs 14 to 15) with the following information:

- 1. Rated capacitance code in accordance with "IEC 60062"
- 2. Tolerance on rated capacitance; $M = \pm 20\%$; $K = \pm 10\%$
- 3. Rated (AC) voltage (e.g. 300 V)
- 4. Sub-class (e.g. X2)
- 5. Manufacturer's type designation (e.g. 338 4)
- 6. Code for dielectric material (MKP)
- 7. Manufacturer and origin (" " Belgium; "PL" Poland)
- 8. Year and week of manufacture (e.g. 0133).

original pitch ≥ 22.5 mm.

Interference suppression film capacitors

WO:12345678

MKP 338 4 X2

Package marking

The package containing the capacitors is marked as shown Fig.16.

BCcomponents

MADE IN POLAND

INTERF.SUPPR.FILM CAPACITOR

MKP RADIAL POTTED TYPE

±20% 300V~ 55/105/56/8

300 V~

ORIG **B780** RPC **PL** 1234

TYPE MKP 338 4

QTY 300

CODENO 2222 338 40475

Barcode label marking

LINE	MARKING EXPLANATION
1	Manufacturer's name
2	Country of origin
3	Sub-family
4	Type description and sub class
5	Capacitance value, tolerance, voltage and climatic category ("IEC 60068-1")
6	Safety approvals
7	Preference origin code: B Country of origin in code: 780 (Poland) Responsible production centre: PL Work order: WO
8	Product type description
9	Quantity and production period, year and week code

Product code (12NC)

Fig.16 Barcode label.

10

Interference suppression film capacitors

MKP 338 4 X2

QUICK REFERENCE TEST REQUIREMENTS

TEST	PROCEDURE (quick reference)	REQUIREMENTS	
Robustness of leads			
Tensile strength: "IEC 60068-2-21"	load 10 N; 10 s	no visible damage	
Bending: "IEC 60068-2-21"	load 5 N; 4 × 90 °	legible marking ∆C/C ≤ 5%	
Resistance to soldering heat: "IEC 60068-2-20"	solder bath: 260 °C; 10 s	$\Delta \tan \delta \le 80 \times 10^{-4} \text{ (C} \le 1 \text{ µF); note 1}$ $\Delta \tan \delta \le 50 \times 10^{-4} \text{ (C} > 1 \text{ µF); note 1}$	
Component solvent resistance	isopropyl alcohol; 23 °C; 5 minutes		
Robustness of component (fixed leads only)			
Rapid change of temperature: "IEC 60068-2-14"	5 cycles 1 cycle = 30 minutes at -55 °C and 30 minutes at 105 °C	ΔC/C ≤ 5%	
Vibration: "IEC 60068-2-6"	10 to 55 Hz; amplitude 0.75 mm; 6 hours	$\Delta \tan \delta \le 80 \times 10^{-4}$ (C ≤ 1 μF); note 1 $\Delta \tan \delta \le 50 \times 10^{-4}$ (C > 1 μF); note 1	
Shock: "IEC 60068-2-27"	half sinewave; 490 m/s ² ; 11 ms	·	
Climatic sequence			
Dry heat: "IEC 60068-2-2"	16 hours; 105 °C		
Damp heat, cyclic, test Db, first cycle: "IEC 60068-2-30"		ΔC/C ≤ 5%	
Cold: "IEC 60068-2-1"	2 hours; –55 °C	$\Delta \tan \delta \le 80 \times 10^{-4}$ (C ≤ 1 μF); note 1 $\Delta \tan \delta \le 50 \times 10^{-4}$ (C > 1 μF); note 1	
Damp heat, cyclic, test Db, remaining cycles: "IEC 60068-2-30"		Rins ≥ 50% of specified value	
Voltage proof: "IEC 60384-14"	V _p = 1290 V (DC); 1 minute		
Other applicable tests			
Damp heat, steady state:	56 days; 40 °C;	ΔC/C ≤ 5%	
"IEC 60068-2-3"	90 to 95% RH no load V _p = 1290 V (DC); 1 minute	$\Delta tan \ \delta \leq 80 \times 10^{-4} \ (C \leq 1 \ \mu F); \ note \ 1$ $\Delta tan \ \delta \leq 50 \times 10^{-4} \ (C > 1 \ \mu F); \ note \ 1$	
		Rins ≥ 50% of specified value	
Endurance (AC):	3 × 2.5 kV pulse voltage for X2;	ΔC/C ≤10%	
"IEC 60384-14"	1000 hours; $1.25 \times U_{Rac}$ at 105 °C; once per hour; 0.1 s; 1000 V (RMS) via resistor of 47 Ω :	$\Delta tan \ \delta \leq 80 \times 10^{-4} \ (C \leq 1 \ \mu F); \ note \ 1$ $\Delta tan \ \delta \leq 50 \times 10^{-4} \ (C > 1 \ \mu F); \ note \ 1$	
	$V_p = 1290 \text{ V (DC)}; 1 \text{ minute}$	Rins ≥ 50% of specified value	

Interference suppression film capacitors

MKP 338 4 X2

TEST	PROCEDURE (quick reference)	REQUIREMENTS
Charge and discharge: "IEC 60384-14"	10000 cycles; 5 ms; 1.5 × dV/dt	ΔC/C ≤ 10%
		$\Delta tan \ \delta \leq 80 \times 10^{-4} \ (C \leq 1 \ \mu F); \ note \ 1$ $\Delta tan \ \delta \leq 50 \times 10^{-4} \ (C > 1 \ \mu F); \ note \ 1$
		Rins ≥ 50% of specified value
Passive flammability: "IEC 60384-14"	class B	no burning
Active flammability: "IEC 60384-14"	20 × 2.5 kV discharge	no burning
Heat storage: "IEC 60384-14"	1000 hours; 105 °C	ΔC/C ≤ 5%
		$\Delta tan \ \delta \leq 80 \times 10^{-4} \ (C \leq 1 \ \mu F); \ note \ 1$ $\Delta tan \ \delta \leq 50 \times 10^{-4} \ (C > 1 \ \mu F); \ note \ 1$
Resistance to soldering heat with preheating: "IEC 60384-14"	preheating: 105 °C; solder bath: 260 °C; 10 s	ΔC/C ≤ 5%
		$\Delta tan \ \delta \leq 80 \times 10^{-4} \ (C \leq 1 \ \mu F); \ note \ 1$ $\Delta tan \ \delta \leq 50 \times 10^{-4} \ (C > 1 \ \mu F); \ note \ 1$
Active flammability test	voltage proof up to 2 × peak impulse voltage of 4.13 or until breakdown (100 V/sec, current limited 2mA)	no burning
	failed capacitors connected to a 300 V (AC) power supply during 5 minutes.	

Note

1. Measuring frequency 10 kHz for C \leq 1 μF and 1 kHz for C > 1 $\mu F.$